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We consider a lattice model whose spins may assume a finite number q of 
values. The interaction energy between two nearest-neighbor spins takes on the 
value J~ + J2 or J2, depending on whether the two spins coincide or are different 
but coincide modulo ql, and it is zero otherwise. This model is a generalization 
of the Ashkin-Teller model and exhibits the multilayer wetting phenomenon, 
that is, wetting by one or two or three interfacial layers, depending on the 
number of phases in coexistence. While we plan to consider interface properties 
in such a case, here we study the phase diagram of the model. We show that for 
large values of q~ and q/ql, it exhibits, according the value of J2/J1, either a 
unique first-order temperature-driven phase transition at some point fit where q 
ordered phases coexist with the disordered one, or two transition temperatures 
/ ~ /  and /3It 2l, where q~ partially ordered phases coexist with the ordered ones 
(/~I 1l) or with the disordered one (/~12t), or for a particular value of Jz/Jj there 
is a unique transition temperature where all the previous phases coexist. Proofs 
are based on the Pirogov-Sinai theory: we perform a random cluster representa- 
tion of the model (allowing us to consider noninteger values of q~ and q/qt) to 
which we adapt this theory. 

KEY WORDS:  Phase transitions; Pirogov-Sinai theory; random cluster 
models. 

Centre de Physique Th6orique, CNRS, Luminy Case 907, 13288 Marseille Cedex 9, France. 
On leave from t~cole Normale Sup6rieure de Rabat, B.P. 5118, Rabat, Morocco. 

2 Laboratoire de Physique Th6orique, D6partement de Physique, Facult6 des Sciences de 
Rabat, Morocco. 

3 Courant Institute of Mathematical Sciences, New York, New York, 10012, and Department 
of Mathematics, Rutgers University, New Brunswick, New Jersey 08903. On leave from 
Centre de Physique Th6orique, CNRS, Marseille, France. 

721 

0o22-4715/93/0800-0721507.00/0 �9 1993 Plenum Publishing Corporation 



722 Laanait e t  al. 

1. I N T R O D U C T I O N  

Dunlop et al. (1) introduced, for a microscopic study of the multilayer 
wetting phenomenon, a partially symmetric q-state model with Boltzmann 
weight 

exp[]~ ~ Jla(X~,X))-~ ~ J2~(X~,X))~(X2, X2)] (1) 
(i,j> (i,j> 

Here fl is the inverse temperature, Jm and J2 are nonnegative constants, the 
spin variables x] and x~ defined on each site i of the (d>~ 2)-dimensional 
lattice 77 d belong, respectively, to the sets {1 ..... ql} and {1 ..... q2}, the two 
sums are over nearest-neighbor pairs of a finite set A in Za, and 6 is the 
usual Kronecker symbol, 6(x, x') = 1 if x = x' and zero otherwise. 

Introducing the probabilities pk= 1 - e  -~Jk for k = 1 and 2, we can 
write the corresponding probability distribution 

d/.t(x)=Z -t  ~ 1-(1--pl)(1--p2)+pt(1-pz)o(XJ,x)) 
(f,j> 

+ p2a(x , a(x , dUo(X) (2) 

where d/t o is the counting measure over the configurations x of the spin 
variables in A. 

This models exhibits three kinds of pure thermodynamic phases: q 
(=qlq2) ordered phases in which configurations {x]} and {x~} are both 
ordered, ql partially ordered phases in which only configurations {x~ } are 
ordered while {x 2 } are disordered, and a disordered phase in which both 
configurations are disordered. The phase diagram shown in Fig. 1 was 
conjectured in ref. 1 on the basis of the analysis of restricted ensembles 
associated to the model. This expected phase diagram exhibits, in the plane 
(fiJ1, fiJ2), three regions (where either only the q ordered phases coexist, or 
only the ql partially ordered phases coexist, or only the disordered phase 
is present) separated by three lines of phase coexistence (either between 
ordered and partially ordered phases, or between ordered and disordered 
phases, or between partially ordered and disordered phases) meeting in one 
point where all the phases coexist. 

A proof of such results, which is the main purpose of this paper, might 
be obtained by using the extension of the Pirogov-Sinai theory ~2) proposed 
by Bricmont et aL (3) as already noticed in ref. 1. However, here we will follow 
the idea of the approach recently applied by Laanait etaL ~4~ where the 
Pirogov-Sinai theory is adapted to the Fortuin-Kasteleyn representation (5) 
of the Potts model. 
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Ilj2 t q ordered phases 
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1 i 
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Fig. 1. The dashed lines bound the regions of the phase diagram already proven in ref. 1. 
Kr(q) [-resp. K,(ql)] is the transition point of the q (resp. qx)-state Potts model. 

In doing so, with the model under consideration, we first get a random 
cluster type model with two bond occupation variables n~ and n~, such 
that n~-+ n~ ~< 1, with probability distribution 

-1 ]-I ( 1 - p , ) ( 1 - p = )  ]-] p , (1 -p=)  l-I p2 
<i,j> e Gf <i,j> e Gpw <i , j )  e Gw 

tTN(n2)ttN(n I + n 2) 
x u2  u ,  d/to(n) (3) 

2 .  Here n denotes a configuration of the bond variables n~ and n~, Gy is the 
1 2 set of bonds 0", to be called empty, having no.= no.= 0; Gpw is the set of 

1 2 bonds tj, to be called partially wired, having nij= i - n i j =  1; Gw is the set 
2 1 2 of bonds /j, to be called wired, having nij= 1 - n ~ =  1; N(n ) [respectively 

N(n1+n2)] denotes the number of connected components, including 
isolated sites, in the graph whose edges are the bonds having n~= 1 
(respectively n~. + n~ = 1); d#o is the counting measure. 

For any configuration n = (G I, Gpw , Gw) , we shall use Sp(n) to denote 
the set of sites i where all bonds with endpoint i belong to Gp for p e 
{f, pw, w}. We shall use S(nk), for k = 1, 2, to denote the set of sites that 
are endpoints of bonds having n~.= 1, and use C(n 2) [-respectively 
C(n~+ n2)] to denote the number of connected components in the graph 
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whose edges are the bonds having n 2 = 1 (respectively n~. + n 2. = 1), and use 
LE] to denote the number of elements of the set E. With these notations the 
Boltzmann weight of a configuration n can be~written (cf. Section 2) 

e - m . )  = qlS:(.)lq~lS(nbl- is(nb :, x ( n 2 ) l . l ( e B J 1  _ 1 )2<,)> n~ ~, 

X [e~JL( el3&- 1)] Z<~>"~'c("2)'c(n~+"2)~2 ~1 (4) 

up to the constant term H<a> e ~<Jl+J2) that we introduced in (2) and (3) 
to make more transparent the probabilistic interpretation of the models. 

It turns out that for el3&(e BJ2- 1)=  (e ~:~- 1) q~/a=q~/a the 
Hamiltonian H has three ground states: 

1. The configuration on Z a with only empty bonds, n:, with energy 
per site 4 

e: = - l o g  q (5) 

2. The configuration on 2d with only partially wired bonds, npw, with 
energy per site 

epw = - l o g  q2 - d log(e ~J1 - 1 ) (6) 

3. The configuration on Z a with only wired bonds, nw, with energy 
per site 

ew = - d ~  J1 - -  dlog( e~s2 - 1 ) (7) 

The ground states n: and npw represent, respectively, the free energy of the 
disordered and partially disordered states of the original model. Together 
with nw they are actually the only ground states of the Hamiltonian H for 
nonnegative values of J1 and J2; the phase diagram of ground states 
inferred from (5)-(7) is shown in Fig. 2. 

Indeed, it is easy to see that, for any configuration n on Z d that differs 
from one of the configurations np, p c  {f,  pw, w}, only on a finite set of 
bonds, n = np (a.s.), the relative energy H(n I np) = H(n) - H(np) satisfies 
H(n I r i p ) / >  0 whenever ep = min{e:,  epw, ew}; moreover, this relative energy 
satisfies the Peierls condition (cf. Section 3) 

10n[ log(min{ql, q2}) H(n j np) > / - ~  (8) 

4 The  energy per  site of a t r ans la t ion  conf igura t ion  n is defined as the t h e r m o d y n a m i c  l imit  
of the ra t io  between the energy H(n)  and  the n u m b e r  of sites in A. 
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L3J 2 

K'(q) 

s .  tate of wired bonds 

i 

empty bonds pargir~ b~ 

K'(ql) I]J1 

Fig. 2. Diagram of ground states of the Hamiltonian (4); K'(q)=log(ql/d+ 1) and 
K'(qi) = log(q]/~ + 1 ). 

where 0n, to be called the boundary of  the configuration n, is defined as 
= z"\U:+ w> san). 

Hence, with the help of the eirogov-Sinai theory, a sketch of which 
we present for the model under consideration in Section 3, with a slightly 
different definition of contours more suitable for our purpose, we get that 
the phase diagram of the random cluster model (3) mimics, for large values 
of ql and q2, the phase diagram of ground states. As a result we get also 
further information on both models, which we discuss in Section 4. 

To close this introduction, we notice that by analogy with Edwards 
and Sokal, who provided in ref. 6 a simple explanation of the Swendsen- 
Wang algorithm, (7) we can also consider a joint model having two Potts 
spin variables x: and x~ at sites, and two occupation variables n~ and n 2 
on bonds, such that n~- + n~. ~< 1, with probability distribution 

d]/joint(X, n)= Zjoilnt l~ [(1 - p , ) ( 1  -P2)  6(n~, O) 3(n~., O) 
<i,j> 

+ p~(1 -P2)  a(n~., I) a(n~, 0) 6(x:, x)) 

+ p2a(n , 0) a(n , 1) a(x:, x)) 
• dpo(X ) dP0(n) (9) 

As we shall see more precisely in Section 2, the summation over either the 
x or n variables gives (1) Z =  ZRc = Zjot.t; (2)the marginal distribution of 
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the Potts sites variables x is precisely the model d/t; and (3)the marginal 
distribution of the bond occupation variables n is precisely the random 
cluster model dl~RC. 

It would be interesting to use the efficient Swendsen-Wang algorithm 
in the case q~ =q2 = 2  describing the Ashkin-Teller model, where several 
open problems about the phase diagram ~8) and critical exponents on 
transition lines ~9) occur. Let us mention that, for this model, a proof of the 
existence of an intermediate region for some values of J2/J1 is given in 
ref. 10. 

We finally mention that the equivalence stated above between the dif- 
ferent representations of the model is neither restricted to nearest neighbors 
nor to equal coupling constants. This equivalence is proved in Section 2, 
where we introduce also partition functions with boundary conditions 
associated to the Hamiltonian (4). Section 3 contains our main results and 
Section 4 our concluding remarks. The proof of the Peierls condition is 
given in the Appendix. 

2. THE R A N D O M  CLUSTER EXPANSION 

In this section we prove the equality between partition functions stated 
in the introduction, in particular, that the sum of the Boltzmann factor (1) 
over the configurations x equals the sum of the Boltzmann factor (4) over 
the configurations n. 

To prove this equivalence, we shall apply the formula e~J~= 
l + ( e & ' - l ) 6  to each bond successively. More precisely, we use the 
formula 

exp[flJ16(x ~, x) ) + flJ2(~(x~, x)  ) (~(x 2, x2) ] 

= {1 + [exp(flJ2)-  1] 6(x~, x)) 6(x 2, x])} exp[flJ~6(x], x))] 
= exp[/~J16(x~, x))] 

+ [exp(flJa)][exp(flJ2)- 1] 6(x~, x)) 6(x~, x}) 

for each bond, so that the sum of the Boltzmann factor (1), say 2, can be 
written 

2 =  {exp[/~(Sl + J 2 ) I L ( A ) I ] } Z  

=Z Z {[exp(~Jx)][exp(flJz)--l]}lGwl l-[ 6(x~,x))6(x2, x~) 
x Gw=L(A) (ij)~Gw 

• 1--I exp[/~J1 fi(x~, x))] (10) 
(0") c L(A)\Gw 
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where L(A) is the set of bonds with two endpoints in A. By applying again 
the above-mentioned formula for e ~sa to each bond in L(A)\Gw, we get 

Z = E  E E [e/~Jl( e#J2- 1)] j~'l ( e ~ ] l -  1) IGpd 
x GwcL(A) Gp,acL(A)\Gw 

• H H a(x;,x)) 
< ij> ~ Gw < ij> e Gpw 

Notice that formula (11) actually gives the partition function of the 
joint model (up to the constant term e a(J' +&)IC(A)l). 

TO get the equivalence with the random cluster model, we invert the 
summations in (11) and use 

Z IJ H a(xl, x)) 
x <ij>EG w (ij>eGpw 

~--E H (~(X2'X})  H (~(X], w'l]-rtN(n2,rtN(nl+n2)~j ] -- q'12 ' f l  

x <ij>EG., <ij>eG~Gpw 

= q~(n 2) + IAI- IS(n2)lqC(nl+ n a) + IA/- IS(n 1) • S(n2)l (12) 

Indeed, from (11) and (12), we infer that 2 is the sum of the Boltzmann 
2 factor (4) by taking into account that I Gpwl = Y<0> n,~ and I Gwl = Z<0> no, 

together with the equalities 

t A I -  IS(n 1) w S(n2)[ = tSy(n)l 

IS(n I) w s(ne)l - [S(n2)l = IS(n')l - IS(n 1) c~ S(n2)l 

Up to now, we have considered only free boundary conditions. To 
formulate our results we shall introduce other boundary conditions that 
force the system to be in a stable phase, and for which the equivalence can 
also be shown. 

For  any set A in Z d, we define the envelope of A, E(A), as the set of 
bonds having one or two endpoints in A, and the boundary of A, 8A, as the 
set of sites in A having a nearest neighbor in Zd\A. We shall use f2(A) to 
denote the set of configurations n on E(A) and for pc {f, pw, w}, we shall 
use f f 2P(A)  to denote the set of configurations n e O(Z a) = f2 such that all 
the sites of 8A and Zd\A belong to Sp(n). 

We define the energy per site of a configuration n e s by 

ei(n) = -- [ H ( 1 -  n~)(1 - n ~ ) ] l o g q - [ z ( i E S ( n l ) , i ~ S ( n 2 ) ] l o g q 2  
< O'> ~ E(i) 

r ~nl(i) - #  6n2(i) (13) 
2 z 
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where Z is the characteristic function, c5 is the codifferential operator 
6nk(i) =~,((j)~E(i)n~ for k =  1, 2, and 

e el = e Bsl - -  1 (14) 

e r = e~J~(e ~J2 - 1 ) (15) 

We define the Hamiltonian in A of a configuration n = np  ( a . s . )  by 

HA(n )= ~ ei(n) + H(n) 
i ~ A  

/ t (n)  = - C ( n  2) log q2 - C( nl + n2) log ql + Cp 

where C f = 0 ,  Cpw=log ql, and Cw=log q. Let us observe that for any 
configuration n e(2P(A) the Hamiltonian Ha(n) coincides with that given 
by (4) up to a boundary term and to the term Cp. The boundary term is 
the usual difference between the "physical" and "diluted" partition func- 
tions in the Pirogov-Sinai theory. We shall introduce only the second one, 
which is more convinient for our purpose. The term -Cp  represents the 
contribution to connected components of the configuration np. Subtracting 
this term will allow us to write expansions of the Hamiltonian [see (22)] 
and partition functions in a form where the different components of the 
boundary of a configuration (contours) do not interact. Let us also 
mention that for any configuration n e OP(A), 

H(n [ lip) = HA(n) -- HA(rip) = HA(n ) -- ep [AI (16) 

since ei(np) = ep. 
For each p ~ {f, pw, w }, we define the diluted partition function 

d i l  Zp (A)=  Z e-hA(") (17) 
n e g 2 P ( A )  

and introduce the thermodynamic limit 

s(H)= lim 1 log Z~i~(A) (18) 
A,z~ IAI 

which is independant of the boundary condition p. 

3. M A I N  RESULTS 

We consider a configuration n = np (a.s.), and recall that the boundary 
On of n is defined as the complement of the set of sites i where all the bonds 
with endpoint i are either empty or partially wired or wired. 
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A couple 7 = {F, n(F)}, where F_= Supp 7 is a maximal connected sub- 
set s (component) of 3n and n(F) a configuration in (a(F) [i.e., a configura- 
tion on the envelope E(F) ofF-], is called a contour of the configuration n. 
A couple 7 = {F, n(F)}, where F is a connected subset of Z d and n(F) a 
configuration in g2(F), is called a contour if there exists a configuration n 
such that 7 is a contour ofn. 

Whenever 7 is a contour, we denote by Ext 7 the unique infinite 
component of Za\Supp 7 and V(7) = H \ E x t  7 and Int 7 = V(7)\Supp 7. 
Consider the configuration n having 7 as unique contour, to be denoted n.e; 
we use Intm 7, for any m ~ {f, pw, w}, to denote the subset of sites of Int 7 
which belong to Sin(n). When this configuration will coincide with np  o n  

the envelope of Ext 7, we shall specify this with a subscript p. 
Two contours 7i and 7i with nonconnected supports are called 

mutually compatible contours. They are mutually compatible external 
contours if V(Ti)c Ext 7j and V(Tj)c Ext 7~. We shall use g2(TP) to denote 
the set of configurations having 7 p as unique external contour, and for a 

P P family OP= {71 ..... 7,} of external contours, we shall use the notation 
ExtA OP=A\UT.peop V(TP). To simplify formulas we shall let the symbol 7 
or 7 p (respectively 0 p) denote a contour (respectively, a family of external 
contour) as well as its support; in particular we shall use Hy instead 
of H s u p p  ~,. 

We introduce the crystal partition function 

Z~ ~ exp[-Hv(~,)(n)] (19) 
n e ~Q(yP) 

for which, together with the diluted partition function (17), the following 
set of recurrence equations holds: 

d i l  Zp (A)= ~ exp(-ep  IExtA 0P[) 1~ 
OP:OPcA yPE8 p 

OP~OA = ~  

z~ ) = exp [ -  H~p(n~ep)] I-[ Z2'(Intm ?P) 
m 

ZCf(yP ) (20) 

(21) 

where the sum runs over families of external contours with support 
included in A and nonintersecting c~A. This is because for every configura- 
tion n = n p  (a.s.), specified by a family of contour {7}, one has 

Ha(n) = X H~(n~) + X em [Sm(n)t (22) 
m 

5A set of sites F is connected if for every two elements i,j~l', there is a sequence i=il, 
i2,..., i, =j  such that ik and ix+ 1 are nearest neighbors for k = 1,..., n -  1. 

822/72/3-4-21 
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for every A ~  {7}, since Er(n)=Z~/q(n~). The recurrence equations (20) 
and (21) are equivalent to Lemma~ in ref. 2, where the partition 
functions are defined with relative Hamiltonian. 

Lemma. Let qo=min{q~,  q2} and eo=min{e/ ,  ep~, ew}; then 

H~.(n~)-eo 171 > ~ l o g  qo (23) 

We postpone the proof to the Appendix. Let us mention that, 
w h e n e v e r  ep = Co, the Lemma implies 

p(7 p) - exp[ - Hrp(n~,) + ep I~Pl 1 ~ qo  (1/2a) 17pt (24) 

and also the Peierts condition (8) by taking into account (16) and (22). 
To state our result, we introduce for each p the partition function of 

a contour model with a parameter bp and contour weight ~b~,(TP), 

Z(A [ ~bpP; bp)= E ebpV(O0 [I  
OP:OPcA TPEOP 

O P n O A = ~  

~pb~(TP) Z(Int 7 p I ~b~) (25) 

Here 

Z(A I ~bp b~) = Z l-I ~bpb~(7 p) (26) 
c~:c3 ~ A 7 P ~ c ~  

0 ca OA = ff:~ 

where the sum is over families of compatibles contours. The functional ~bp b~ 
is called a r-functional if for some number z > 0 and every 7 it satisfies the 
estimates ]~bpbP(TP)l ~<e -~ I~Pl; this ensures in particular the existence of the 
thermodynamic limit 

s(~bp b~) = lim ~ log Z(AlObp p) 
A,z~ [AI 

T h e o r e m .  Whenever qo is large enough, then for every nonnegative 
value of J i  and Jz .and every p e { f ,  pw, w}, there exist nonnegative 
parameters bp and associated contour functionals ~b bp such that 

bp - ep + s(06 b') = s(H) (27) 

e ~p IAIz(A ] (); b) = Zdi'(A) (28) 
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There exist three regions in the plane (flJ1, flJ2) where bp=0, bp,~p>O, 
separated by three trajectories of phase coexistence determined by the 
equations 

- e f  + s(q~f) = -epw + s(@w) = s(H)  (29) 

-epw + s(q~pw) = - e w  + s(Ow) = s(H) (30) 

- ew + s(q~w) = - e f  + s(Of) = s(H) (31 ) 

meeting at a unique point where b I = bpw = bw = 0. 
The contour functionals ~bp bp defined inductively by 

~bpbp(7 p) Z(Int 7P I Obp p) = e-(bP- ep) [ v(Tp)l zcr(Tp ) (32) 

satisfy the estimates 

q~bj(Tp ) << qo(1/2a) i~l exp(9q ~ l/2a [~)p[) (33) 

Proof. We refer the reader to ref. 11 for a proof given for the general 
class of models of the Pirogov-Sinai theory satisfying the Peierls condition. 
We also refer to ref. 12, where a proof is given for the model under con- 
sideration. We only mention that the inductive expression (32) of contour 
functionals immediately yields relation (28) of the theorem, taking into 
account the inductive expressions (20) and (21) and the definition (25). 
The statement (27) follows also from (32) provided the ~b b; are indeed 
r-functionals. We also mention that, according to ref. 11 and (23), the 
bound (33) follows from the inequality 

~)bp(~)p) ~ qo(1/2a)r~l exp(3e " I~'P[) (34) 

where r must satisfy the inequality 

qo (L/2d) 17Pl exp(3e ~ ]YPl) ~< exp( - z  I~Pl) (35) 

This is done by taking e - t =  3qo (1/2~) provided qo > 32a- 1 

4. C O N C L U D I N G  R E M A R K S  

The Theorem above shows that the random cluster model (3) may be 
described equivalently as a system of noninteracting compatible contours. 
If qo is large enough, the associated activities are small and decay exponen- 
tially in the contour length. This allows a good control of the system at any 
temperature. 

We introduce the state ( . ) ~  for e e  {w, pw, f } .  When bF=0, we have 
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(n~.)f<. O(q~/d) and ( ,n~)*~ O(q~/a) for any bond 0". This is because n~= 1 
(resp. n2. = 1) only if there is a contour surrounding or containing i or j, ~bf ,j 
is an upper bound on the probability of contour, and the shortest contour 
has length [7[ =2 .  Analogously, one has the same upper bound for 
( 1 - n ~ )  pw and " 2-,w <,nu) when bpw=O, and for ( 1 - n ~ )  w and ( 1 - n ~ )  w 
when b~ = 0. From this we get that the coexistence line is first order with 
a jump A E >  0 of the internal energy E = (1/fl) c~s(H)/afl. Notice that in the 
particular cases J~ = 0 and J2 = 0, we get, respectively, the q- and q~-state 
Potts models, to which our results apply. 

The phase diagram can be obtained also, following ref. 13, without 
introducing parametric contour models. Let ~o and ~o be the values of 2 
the parameters ~ and ~2 such that e ,=ep~=ew.  Then the differences 
#1 =- d(~l - ~o) = ep~ - ef and /l 2 - d(~ 2 - ~o) = e~ - e, may be considered 
as generalized external fields. The required degeneracy-breaking condition 
for the matrix 

(36) 

to be nonsingular, as well as the condition [Oep/C~]li[ ~ 1, (14) are obviously 
satisfied. Then (using the notations of ref. 14), we introduce the functionals 
K(7 p) = p(yP) f,,(yP), where 

fm(Tp) = [Zpdil(intm 7p)j - - 1  di l  Z m (Intm •P) 

so that 

z d i , ( A ) = e  e, lAI E 1 ~  K(TP) (37) 
c3~A ?Pe~ 

O ~ c~ A = fg 

We introduce also the truncated partition function Z'q(A) as the right-hand 
side of (37) with a sum over stable contours, i.e., satisfying fm(7 p)<~ 
exp(4 LOInt~yPl), and the corresponding free energy hp. According to 
refs. 13 and 14, for qo large enough, the Peierls condition (24) ensures that 
for stable boundary conditions p, i.e., satisfying ap = hp - minm hm -- 0, then 

dil agree with ' As a result, we the contours ?P are stable and thus Zp Zp. 
obtain the same description as in the Theorem with the role of parameters 
bp replaced by ap. 

The completeness of the phase diagram or its differentiability proper- 
ties allow us to derive some properties of the model (2) by taking into 
account the analysis of translation-invariant Gibbs states of refs. 15 and 16. 
Further differentiability properties of the phase diagram follow from ref. 17. 

Finally, we introduce convenient mixed boundary conditions to define 
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the surface tensions between two wired phases, a .... ', and between two 
partially wired phases, a pw' pw', and a surface tension between a wired (resp. 
partially wired) phase and the empty phase, a w'1 (resp. apw, S), and also 
surface tensions between wired and partially wired phases, a w, pw. This is 
done by restricting the allowed configuration of bonds (with n~ = 1, n~. = 0 
or n~-=0, n2= 1) to those which do not connect a site of the top half 
boundary to a site of the bottom half boundary. We use these nonconnec- 
tedness conditions and the Theorem to prove that the surface tensions 
between coexisting stable phases are strictly positive. (~2) Moreover, our 
goal will be to prove that these surface tensions satisfy the (generalized) 
Antonov rule 

(T w , w' ~- 17 w , f Aff (~ f , w' 

. . . .  ' _(~w, pw ~ _ f f p w ,  w' ~ f f p w ' , w '  (38) 

(~w,w' ~ tTw, pw ~_ (Tpw, f .~_ (Tf, pw' ~_ tTpw',w' 

when the considered phases coexist. A first important step has been given 
in ref. 1 (see also ref. 18), where it is proven by correlation inequalities that 
the left-hand sides are greater than the right-hand sides for the three equa- 
tions in (38). The converse inequalities need a detailed analysis of interfaces 
following ideas of ref. 19. The analysis given in this article provides a step 
in this direction. 

APPENDIX.  PROOF OF THE L E M M A  

Consider a site i E ~, and first assume that there is no wired bond in 
E(i) for the configuration nT~. Then E(i) contains at least one partially 
wired bond. Starting from (13) and using e 0 4 - d ~ l - l o g q 2  [cf. (6) 
and (14)] and eo ~< - l o g  ql - l o g  q2 [cf. (5)], we get 

ei(n) - eo = - @  6nl(i) - log q2 - e0 

> e o + l ~  6n~(i ) e o + l ~  
2d 2d 

2 d - 6 n l ( i )  
~> log ql 

2d 

We then use that the number of connected components C(n 1 -bn 2) 
satisfies the bound (see Appendix B in ref. 20 for details) 

1 
C(nl +n2)<~ ~ (A1) 

i: i <~ 6nl(i} + t~n2(i) ~< d 2 tfinl(i) + ~5n2(i)[ 
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When 1 ~< 6n~(i) ~<2d- 1 and 6n2(i) = 0  we have 

2d- fn~( i ) logq l  z(l  <~6nl(i)<~d)log 1 
2d 21~.1r ql >~ ~-d log ql (A2) 

so that each site i e7 satisfying 6n2(i)=0 gives at least a contribution 
(1/2d) log ql to the left-hand side of (23). 

Now we assume that at least a bond in E(i) is wired. Starting from 
(13) and using e o ~ < - d ~ l - l o g q 2  and eo~<--~2 [-cf. (7) and(15)]  and 
eo ~< - log  ql - log q2 we get 

ei(n)-- eo = - - ~  6n1( i ) - -~  6n2(i)--eo 

eo log q2 >1 -~ [ 6nl( i) + 6n2(i)] + - - ~  ~nl( i) - e o 

~> 2 d -  6nl(i) - 6n2(i) log ql + 2 d -  6n2(i) log q2 
2d 2d 

We then use that the number of connected components C(n 2) satisfies the 
bound 

1 
< Y (A3) 

i:1 ~< 5n2(i) ~< d 2 ]~n2(i)l 

When 1 ~< 6n2(i) ~< 2 d -  1 we infer 

2 d -  fin1(/) - 6n2(i) 

2d 
2 d -  6n2(i) log 

log ql + q2 
2d 

Z(1 ~< 6nl(i) + 6n2(i) ~< d) log ql - -  

216nl(i) + 6n2(i)1 216n2(i)l 

Z(1 ~< 6n2(i) <~ d) 
log q2 

q2 (A4) ~> l~ d 

so that each site i e7 such that 0n2(i)~> 1 gives at least a contribution 
(1/2d) log q2 to the left-hand side of (23). Thus, each site of 7 gives at least 
a contribution (1/2d) log qo and we conclude the proof of the lemma. 
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